
CS 107
Midterm Review Session
Saturday, May 4, 2024

Based on slides created by Eduardo Higuera and Christine Cheng

Integers, bits, and bytes
Bitwise operators

Strings
Pointers

Stack and heap
Generics

Review Topics

Bits

Unsigned numbers: are 0 or positive (no negatives)

Signed numbers: can be negative

Most significant bit will tell you if it’s positive or negative (signed)

If you compare a signed with unsigned both numbers are read as unsigned

Switching between the values a and -a (two’s complement)
1) Flip every bit
2) Add 1
Works in both direction

Signed vs Unsigned Numbers

Binary vs Hex

Bitwise Operators

● AND (&): a & b = 1 if both a and b are 1
● OR (|): a | b = 1 if either are 1
● XOR (^): a ^ b = 1 if only one of them is 1 (XOR with 1 flips the bit, XOR

with 0 keeps it the same)
● NOT (~): ~a flips every bit in a
● LEFT SHIFT (<<): a << n moves every bit to the left by n spaces, fills

bottom n bits with 0
● RIGHT SHIFT (>>): a >> n moves every bit to the right by n spaces

● If a is signed, fills top n bits with the original most significant bit (aka
signed bit)

● If a is unsigned, fills top n bits with 0

Bit operations: &, |, ^, ~, >>, <<

● AND

If AND with 0, always outputs 0 (turns off)
If AND with 1, always keeps the other bit

● OR

If OR with 1, always outputs 1 (turns on)
If OR with 0, always keeps the other bit

Common Use Case: Masking

Consider the mystery function. The marked line (Line 5) does most of the work of the function.
int mystery(unsigned int v) {

int c;
for (c = 0; v; c++) {
 v &= v - 1; // Line 5
}
return c;

}
1a) Identify the change in bit pattern between a non-zero unsigned value number and its numeric predecessor
(number - 1).
1b) How does the bit pattern of v change after executing line 5?
1c) In terms of the bit pattern for v, what value is returned by the call mystery(v)? 1d) The following statements
appear in a C program running on our myth computers.
int x = /* initialization here */
bool result = (x > 0) || (x - 1 < 0);
Either argue that result is true for all values of x or give a value of x for which result is false. Is result always true?
Yes / No If Yes, explain: If No, the following initialization of x will make result false:

Practice Question 1

A: The least significant 1 bit is now a 0 and any bits further to right are all 1s.

B: The least significant 1 bit is changed to a 0.

C: The count of 1 bits in v

D: No. If x = INT_MIN, result is false.

Practice Question 1 - Solution

Write a function that takes an unsigned int and returns trueif its binary
representation contains at leastone instance of at least two consecutive zeros.

Examples:

● Input 00110111101111101111111111011111 Return: true
● Input: 11111101111011111110000111111111 Return: true
● Input: 01010101010101010101010101010101 Return: false
● Input: 11111111111111111111111111111111 Return: false

Write a function that uses a loop to each pair of bits to detect a pair of zeros

Practice Question 2

bool zeros_detector_loop(unsigned int n) {

}

Practice Question 2 - Practice Midterm 2, Q5

bool zeros_detector_loop(unsigned int n) {

 unsigned int mask = 0x3; // 0b000....00011

 for (int i = 0; i < 31; i++) {

 if (!(n & mask)) return true;

 mask <<= 1;

 }

 return false;

}

Practice Question 2 - Solution

Questions?

Strings

● Array of chars
● Must have a null terminator (\0) at the end
● Each character is an element in the array,

including the null terminator
● Multiple ways to declare strings
● Strange things happen if there is no null

terminator

Strings in C

char str[] = “Hello”

char *str = “Hello”

char str[6];
strcpy(str, “Hello”);

index 0 1 2 3 4 5

char 'H' 'e' 'l' 'l' 'o' '\0'

● strcat(dest, src): appends the string src to destination (dest = dest + src)
● strcpy(dest, src): copies the string src to destination (dest = src)
● strlen(str): returns the length of the string str, not counting the null terminator
● strspn(const char *str, const char *accept)

○ Returns the count of initial characters in str that are in accept
■ strspn(“abcbad”, “abc”) // returns 5
■ strspn(“AaAa”, “A”) // returns 1

● strcspn(const char* str, const char* reject)
○ Opposite of strspn, but same idea

● strcmp(const char* str1, const char* str2)
○ Compares two strings, returns 0 if they are the same.

■ strcmp(“hi”, “hi”) //returns 0
■ strcmp(“hi”, “bye”) //doesn’t return 0

○ Returns < 0 if str1 should come before str2, and > 0 if str2 should come before str1

String Operations (#include <string.h>)

Pointers

When passing parameters, C always passes a copy of whatever parameter is passed

To change a value and have its changes persist outside of a function, we must pass a
pointer to the value (To change an int, pass an int*)

In C pass by value

A pointer is a variable storing an 8 byte memory address and is denoted with a *

● A char * is a variable storing an 8 byte memory address that points to a character, which can
be part of a string or a standalone char

● You can add or subtract numbers from a pointer to change its location with pointer arithmetic

Every variable in C has a memory address, name, and value

int x = 120;

i. x is the name of the variable
ii. 120 is the value
iii. The memory address is an 8 byte location in memory that you can get via &x

Pointers

● Pointing to a location in memory
● Pointing to a series of locations in memory (arrays)
● Representing data types (char*’s representing strings)
● Passing in modifiable references to an object (pointers to variables and

double-pointers)
● Dynamically-allocated memory (pointers returned from malloc / free)

Why Pointers?

When passing arrays as parameters, the array is automatically converted to a pointer to
the first element

Arrays of pointers are arrays of 8 byte values; whatever they point to is not stored in the
array itself. e.g. an array of strings stores pointers to their first characters, not the
characters themselves

Arrays and Pointers

Pointer arithmetic works in units of the size of the pointee type.

Ex: +1 for an int * means advance one int, so 4 bytes

int arr[] = {1, 2, 3, 4, 5};
int * y = arr;
y = y + 2 // *y is now 3

Pointer Arithmetic

Memory

Stores local variables and parameters

Each function call has its own stack frame, which is created when the call starts, and
goes away when the function ends

The stack grows downwards and shrinks upwards

The Stack

We manually allocate this memory

Beneficial if we want to store data that persists beyond a single function call

Must clean up the memory when we are done

● C no longer knows when we are done with it, as it does with stack memory.
● Check up the function called free(...)

Malloc/calloc/etc. to request memory on the heap

● Request number of bytes
● Get void* to newly-allocated memory

Memory is resizable with realloc

The Heap

Stack vs Heap

● Easy cleanup -- we don’t have
to worry about it

● Fast allocation -- no malloc,
etc.

● Type safety -- compiler doesn’t
know about data allocated
dynamically on the heap so it
can’t help you :(

● Large size
● Ability to resize allocations --

array size fixed in stack
● Persistence beyond function’s

stack frame

Stack
Heap

void *malloc(size_t size);

● Allocates size bytes of uninitialized storage.

void* calloc(size_t num, size_t size);

● Allocates memory for an array of num objects of size and initializes all bytes in the allocated storage to zero.

void *realloc(void *ptr, size_t new_size);

● Reallocates the given area of memory. It must be previously allocated by malloc(), calloc() or realloc() and not yet freed with a
call to free or realloc. Otherwise, the results are undefined.

● The return value can be the same as ptr but it’s not guaranteed

void free(void* ptr);

● Deallocates the space previously allocated by malloc(), calloc() or realloc().

Memory Allocation

Consider the following code, compiled using the compiler and settings we have been
using for this class.

char *str = "Stanford University";
char a = str[1];
char b = *(char*)((int*)str + 3);
char c = str[sizeof(void*)];

What are the char values of variables a, b, and c? (as an example, a = ‘t’) Write
“ERROR” if the line of code declaring the variable won’t compile.

Practice Question 2a - Extra Practice Problems, Q3

Consider the following code, compiled using the compiler and settings we have been
using for this class.

char *str = "Stanford University";
char a = str[1];
char b = *(char*)((int*)str + 3);
char c = str[sizeof(void*)];

What are the char values of variables a, b, and c? (as an example, a = ‘t’) Write
“ERROR” if the line of code declaring the variable won’t compile.

b is 'v'
c = ' ' (space)

Practice Question 2a - Solution

The code to the right has three buggy lines of code in
it. The three buggy parts of the code are noted in bold.
Next to each buggy line, write a new line of code that
fixes the bug. You may have an idea for restructuring
the program that would also fix the bugs, but you must
only write code to replace the lines shown in
bold—one line of replacement code per one line of
buggy code.

The purpose of this function is to take an array of
strings (always size 3) and return a heap-allocated
array of size 2, where the first entry is the
concatenation of the first two strings in the input array,
and the second entry is a copy of the third string in the
input array. The two strings in the returned array are
both newly allocated on the heap. The input is not
modified in any way. You may assume that the input is
always valid: the array size is always 3, none of the
array entries is NULL, and all strings are valid strings.

Practice Question 2b - Extra Practice Problems, Q3
char **pair_strings(char **three_strings) {

char *return_array[2];
__________________;
size_t str0len = strlen(three_strings[0]);
return_array[0] = malloc(str0len +

strlen(three_strings[1]));
____________________;
strcpy(return_array[0], three_strings[0]);
for (size_t i = 0; i < strlen(three_strings[1]); i++) {
for (______________________________________) {
return_array[0][str0len + i] = three_strings[1][i];

 }
 return_array[1] = strdup(three_strings[2]);
 return return_array;
}

The code to the right has three buggy lines of code in
it. The three buggy parts of the code are noted in bold.
Next to each buggy line, write a new line of code that
fixes the bug. You may have an idea for restructuring
the program that would also fix the bugs, but you must
only write code to replace the lines shown in
bold—one line of replacement code per one line of
buggy code.

The purpose of this function is to take an array of
strings (always size 3) and return a heap-allocated
array of size 2, where the first entry is the
concatenation of the first two strings in the input array,
and the second entry is a copy of the third string in the
input array. The two strings in the returned array are
both newly allocated on the heap. The input is not
modified in any way. You may assume that the input is
always valid: the array size is always 3, none of the
array entries is NULL, and all strings are valid strings.

Practice Question 2b - Extra Practice Problems, Q3
char **pair_strings(char **three_strings) {

char *return_array[2];
char **return_array = malloc(2 * sizeof(char*));
size_t str0len = strlen(three_strings[0]);
return_array[0] = malloc(str0len +

strlen(three_strings[1]));
return_array[0] = malloc(str0len +

strlen(three_strings[1]) + 1);
strcpy(return_array[0], three_strings[0]);
for (size_t i = 0; i < strlen(three_strings[1]); i++) {
// or i < strlen(three_strings[1]) + 1
for (size_t i = 0; i <= strlen(three_strings[1]); i++) {
return_array[0][str0len + i] = three_strings[1][i];

 }
 return_array[1] = strdup(three_strings[2]);
 return return_array;
}

Practice Question 3 - Extra Midterm Practice, Q2

Practice Question 3 - Extra Midterm Practice, Q2
int eleven = 11;

char *stranger = "things";

int **upside = malloc(3 * sizeof(int*));

upside[0] = malloc(4);

*upside[0] = 2;

upside[1] = &eleven;

upside[2] = (int*) ((char*)stranger + 1);

Practice Question 3 - Solution
int eleven = 11;

char *stranger = "things";

int **upside = malloc(3 * sizeof(int*));

upside[0] = malloc(4);

*upside[0] = 2;

upside[1] = &eleven;

upside[2] = (int*) ((char*)stranger + 1);

Questions?

We can use void * to represent a generic pointer to "something"

void * loses information about data types - there is less error checking and it is more prone to mistakes

memcpy/memmove are functions that let us copy around arbitrary bytes from one location to another

● memcpy does not support overlapping src/destination memory regions
● memmove does

We can use pointer arithmetic plus casting to char * to do pointer arithmetic with a void * to advance it by
a specific number of bytes

Generics

Comparison functions have the following prototype:

int my_compare(const void *a, const void *b);

Comparison functions work using pointers to what you’re comparing!

Comparison Functions

Generic Comparison Function Formula :

1. Cast the void* argument and set a pointer of known pointee type equal to it.
2. Dereference the typed pointer to access the value. (Steps 1 and 2 are often

combined to cast and dereference in one expression.)
3. Compare values to determine the result to return.

Reminder!
Comparison functions return:
< 0 if a comes before b
= 0 if a and b are equal
> 0 if a comes after b

Generic Comparison Function Formula

What would a callback comparison function that can be passed to qsort look like if we
wanted to arrange an array of ints in order of increasing absolute value?

(hint - the builtin C abs() function can calculate absolute value)

int abs_fn(const void *a, const void *b) {

 return abs(*(int *)a) - abs(*(int *)b);

}

Example from Lab

We can pass functions as parameters to other functions by specifying one or more function
pointer parameters

A function pointer lets us pass logic that the caller has access to to the callee

● For instance, we pass a function to bubble_sort that knows how to compare two
elements of the type we are sorting.

Functions with generic operations must always deal with pointers to the data they care
about

● For instance, comparison functions must cast and dereference their received
elements before comparing them.

Function Pointers

return_type (*function_name) (arg1, arg2)

Ex: int (*my_compare) (void* a, void* b)

Function Pointers: HowTo

int process_cmp(int (*compare_ints)(const void *a, const void *b)) {

int a = 1;

int b = 2;

 return compare_ints(&a, &b);

}

Remember, we must always pass a pointer to whatever we want to compare!

Comparison Function Pointer

3a) The generic find_min searches an array for its smallest element according to a client-supplied callback function.
The function arguments are the array base address, the count of elements, the size of each element in bytes and a
comparison function. The function returns a pointer to the minimum array element. As an example, find_min on the
array {3.7, 9.4, 1.1, -6.2} with ordinary float comparison returns a pointer to the last element in the array. Fill in each
of the three blank lines with the necessary expression so that the function works correctly.

void *find_min(void *base, size_t nelems, size_t width,
 int (*cmp)(const void *, const void *)) {

 assert(nelems > 0); // error if called on empty array
 void *min = __; // Line 1
 for (size_t i = 1; i < nelems; i++) {
 void *ith = __; // Line 2
 if (___) { // Line 3
 min = ith;
 }
 }
 return min;
}

Practice Question 4 - Practice Midterm 3, Q3

3a) The generic find_min searches an array for its smallest element according to a client-supplied callback function.
The function arguments are the array base address, the count of elements, the size of each element in bytes and a
comparison function. The function returns a pointer to the minimum array element. As an example, find_min on the
array {3.7, 9.4, 1.1, -6.2} with ordinary float comparison returns a pointer to the last element in the array. Fill in each
of the three blank lines with the necessary expression so that the function works correctly.

void *find_min(void *base, size_t nelems, size_t width,
 int (*cmp)(const void *, const void *)) {

 assert(nelems > 0); // error if called on empty array
 void *min = base; // Line 1
 for (size_t i = 1; i < nelems; i++) {
 void *ith = __; // Line 2
 if (___) { // Line 3
 min = ith;
 }
 }
 return min;
}

Practice Question 4 - Solution

3a) The generic find_min searches an array for its smallest element according to a client-supplied callback function.
The function arguments are the array base address, the count of elements, the size of each element in bytes and a
comparison function. The function returns a pointer to the minimum array element. As an example, find_min on the
array {3.7, 9.4, 1.1, -6.2} with ordinary float comparison returns a pointer to the last element in the array. Fill in each
of the three blank lines with the necessary expression so that the function works correctly.

void *find_min(void *base, size_t nelems, size_t width,
 int (*cmp)(const void *, const void *)) {

 assert(nelems > 0); // error if called on empty array
 void *min = base; // Line 1
 for (size_t i = 1; i < nelems; i++) {
 void *ith = (char *)base + i * width; // Line 2
 if (___) { // Line 3
 min = ith;
 }
 }
 return min;
}

Practice Question 4 - Solution

3a) The generic find_min searches an array for its smallest element according to a client-supplied callback function.
The function arguments are the array base address, the count of elements, the size of each element in bytes and a
comparison function. The function returns a pointer to the minimum array element. As an example, find_min on the
array {3.7, 9.4, 1.1, -6.2} with ordinary float comparison returns a pointer to the last element in the array. Fill in each
of the three blank lines with the necessary expression so that the function works correctly.

void *find_min(void *base, size_t nelems, size_t width,
 int (*cmp)(const void *, const void *)) {

 assert(nelems > 0); // error if called on empty array
 void *min = base; // Line 1
 for (size_t i = 1; i < nelems; i++) {
 void *ith = (char *)base + i * width; // Line 2
 if (cmp(ith, min) < 0) { // Line 3
 min = ith;
 }
 }
 return min;
}

Practice Question 4 - Solution

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must fill in the blank line in main with a call to find_min and can assume that this function
works correctly. You will also need to implement the comparison callback function. Hint:
remember that the command-line arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 // TODO
}

int main(int argc, char *argv[]) {
 char ch = ___;
 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Practice Midterm 3, Q3

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must fill in the blank line in main with a call to find_min and can assume that this function
works correctly. You will also need to implement the comparison callback function. Hint:
remember that the command-line arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 // TODO
}

int main(int argc, char *argv[]) {
 char ch = **(char **)find_min(argv + 1, argc - 1, sizeof(*argv), cmp_first);
 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Solution

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must fill in the blank line in main with a call to find_min and can assume that this function
works correctly. You will also need to implement the comparison callback function. Hint:
remember that the command-line arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 return **(const char **)p - **(const char **)q;
}

int main(int argc, char *argv[]) {
 char ch = **(char **)find_min(argv + 1, argc - 1, sizeof(*argv), cmp_first);
 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Solution

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must call to find_min and can assume that this function works correctly. You will also need to
implement the comparison callback function. Hint: remember that the command-line
arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 // TODO
}

int main(int argc, char *argv[]) {
 // TODO; get char and store in ch

 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Practice Midterm 3, Q3

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must call to find_min and can assume that this function works correctly. You will also need to
implement the comparison callback function. Hint: remember that the command-line
arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 // TODO
}

int main(int argc, char *argv[]) {
 char *result = *(char **)find_min(argv + 1, argc - 1, sizeof(*argv), cmp_first);
 ch = result[0];
 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Solution

3b) Complete the program started below to use find_min to find the command-line argument
with the minimum first character ("minimum" means smallest ASCII value) and print that
character. For example, if invoked as ./program red green blue, the program prints 'b'. You
must call to find_min and can assume that this function works correctly. You will also need to
implement the comparison callback function. Hint: remember that the command-line
arguments start at index 1 in the argv array.

int cmp_first(const void *p, const void *q) {
 return **(const char **)p - **(const char **)q;
}

int main(int argc, char *argv[]) {
 char *result = *(char **)find_min(argv + 1, argc - 1, sizeof(*argv), cmp_first);
 ch = result[0];
 printf("Min first char of my arguments is %c\n", ch);
 return 0;
}

Practice Question 4 - Solution

3c) The selection sort algorithm works by repeatedly selecting a minimum element and
swapping it into position. On the first iteration, it finds the minimum array element and
swaps it with the first element. The second iteration finds the minimum element of the
subarray starting at the second position and swaps it into the second position. This
process repeats on shorter and shorter subarrays until the entire array is sorted.
Implement the selection_sort function below to perform the selection sort algorithm on a
generic array. You will need to call find_min and can assume that the function works
correctly.

void selection_sort(void *base, size_t nelems, size_t width,

 int (*cmp)(const void *, const void *)) {

 for (size_t i = 0; i < nelems - 1; i++) {

Practice Question 4 - Practice Midterm 3, Q3

void selection_sort(void *base, size_t nelems, size_t width,

 int (*cmp)(const void *, const void *)) {

 for (size_t i = 0; i < nelems - 1; i++) {

 void *ith = (char *)base + i * width;

 void *min = find_min(ith, nelems - i, width, cmp);

 char tmp[width];

 memcpy(tmp, ith, width);

 memcpy(ith, min, width);

 memcpy(min, tmp, width);

 }

}

Practice Question 4 - Solution

Questions?

Good Luck Tuesday :)

